🐵 Jelaskan Bagaimana Daya Listrik Dalam Kawat Hambatan Berubah Menjadi Panas
Penambahanentropi ini terjadi selama proses perpindahan panas dari satu benda ke benda lain sedang berlangsung. Persamaan antara energi dan entropi menurut hukum termodinamika kedua adalah tidak dapat dimusnahkan karena tidak dapat berkurang. Sementara itu, perbedaannya adalah entropi dapat diciptakan, sementara energi tidak dapat diciptakan.
9 Medan Magnet Sebuah Kumparan. Pengaruh medan magnet yang dihasilkan oleh sebuah penghantar arus terhadap benda yang ada di sekitarnya sangat kecil. Hal ini disebabkan medan magnet yang dihasilkan sangat kecil atau lemah. Agar mendapatkan pengaruh medan yang kuat, penghantar itu harus digulung menjadi sebuah kumparan.
Resistorkomposisi umumnya diberi awalan "CR" pada penulisannya, contoh CR10k Ω dan tersedia dalam kemasan E6 ( ± 20% toleransi), E12 ( ± 10% toleransi) dan E24 ( ± 5% toleransi) dengan daya 0.125 atau 1/4 Watt sampai 5 Watt. Karena memiliki nilai toleransi yang cukup besar sehingga kurang presisi (akurat) dalam penggunaanya.
PengertianKonduktor. Konduktor dan Isolator. Apa yang dimaksud dengan konduktor ? yakni merupakan suatu bahan atau zat yang dapat menghantarkan panas dan juga arus listrik, baik dalam bentuk zat cair, padat, maupun gas. Dimana peristiwa ini disebakan oleh benda atau zat tersebut mempunyai suatu sifat yang konduktif.
Seutaskawat besi memiliki hambatan jenis 9,7 × 10−8 Ωm. Jika luas penampang 4,85 mm2 dan hambatan listrik 2 × 10−3 Ω, panjang kawat besi tersebut adalah.. SD. SMP SMA. SBMPTN & UTBK. Produk Ruangguru
Fisika Bisakah Kita Menciptakan Arus Listrik dari Magnet? Simak di Sini! by sereliciouz November 22, 2018. Seorang fisikawan sekaligus kimiawan asal Denmark, Hans Christian Øersted (red: Oersted), mengamati bahwa aliran listrik pada konduktor bisa menghasilkan medan magnet. Hal ini ia simpulkan setelah melihat arah jarum kompas yang berubah
Hambatanlistrik pada sebuah kawat listrik menyebabkan energi listrik berubah menjadi. Question from @Terserah57 - Sekolah Menengah Pertama - Fisika. Search. Articles iyamiera Energi menjadi panas. 0 votes Thanks 0. More Questions From This User See All. Terserah57 April 2019 | 0 Replies .
DayaListrik Daya mekanis adalah usaha yang dilakukan dalam setiap detik. Satuan daya mekanik adalah Pk, dimana 1 Pk = 75 Kgm/detik Sedangkan yang dimaksud daya listrik adalah usaha listrik tiap detik. Seperti tgelah dibahas diatas usaha listrik adalah : A listik = V x I x t (Volt ampere detik = Joule). Jadi daya listik adalah :
Top1: pada sebuah lampu pijar tertulis data 20 watt, 220 volt - Brainly. Pengarang: Peringkat 104 Ringkasan: . ini kak tolong ini untuk hari ini buatin soal tentang getaran sama jawaban nya kak, sama penjelasan nya makasihh . bantu dong kak, kasih cara juga makasih buat yang udah bantu . sebuah benda bermassa 20 kg mengalami jatuh bebas dari ketinggian awal 200 dpl menjadi
. Artikel ini membahas tentang konversi energi listrik menjadi energi panas yang menggambarkan bagaimana elektron dibebankan untuk kehilangan energinya. Ketika elektron bergerak memiliki energi listrik berinteraksi dengan elektron stasioner, energi mereka diubah menjadi energi kimia atau energi cahaya. Tetapi jika energinya lebih besar dari kapasitas elektron stasioner, kelebihan energi listrik dilepaskan dalam bentuk energi panas. Energi listrik diubah menjadi energi kimia ketika elektron stasioner menyerap energi kinetik. Ini adalah proses dari konversi energi kinetik menjadi energi potensial. Jika lebih banyak elektron dengan energi kinetik berinteraksi dengan elektron stasioner yang terikat secara kimia dengan energi potensial yang tersimpan, konversi energi akan dibalik. Saat menyalakan bohlam listrik yang terpasang pada baterai, elektron stasioner di dalam baterai memisahkan ikatan kimianya. Mereka menjadi bebas untuk dibawa-bawa energi potensial as energi kinetik dalam bentuk energi listrik melalui kawat penghantar. Ketika elektron tersebut menghubungi bahan tungsten bohlam, mereka berinteraksi untuk menghasilkan bentuk energi lain. Energi Listrik menjadi Energi PanasBagaimana cara menghasilkan Energi Panas?kredit ShutterstockEnergi listrik eksternal dari baterai memutuskan ikatan kimia elektron di dalam bola lampu sehingga mereka mulai bergerak cepat dengan menyerap energi kinetik eksternal. Suhu adalah kuantitas fisik yang menjelaskan kepada kita tentang seberapa cepat elektron bergerak. Oleh karena itu, gerakan cepat elektron memancar energi panas dari energi listrik. Itulah alasannya ketika energi listrik eksternal mengalir melalui konduktor pembawa arus, kita merasakan panas di permukaannya ketika kita menyentuhnya. Tergantung pada energi listrik eksternal, elektron menahan lebih cepat gerakan. Semakin cepat elektron bergerak, semakin panas permukaannya. Benda yang bersuhu lebih tinggi akan menghantarkan panasnya ke benda lain yang bersuhu lebih rendah. Oleh karena itu, elektron yang bergerak cepat melepaskan energi berlebih dalam bentuk energi cahaya. Ketika kita menambahkan energi cahaya dan energi panas bola, kita menemukan bahwa jumlah mereka sama dengan energi listrik, sesuai dengan hukum konversi tentang Contoh Energi Listrik ke Energi energi listrik menjadi energi panas adalah pemanasan listrik adalah proses menghasilkan energi panas dari unsur-unsur kimia pada energi listrik eksternal yang lewat. Perangkat listrik berisi resistor sebagai elemen pemanas yang berfungsi berdasarkan prinsip pemanasan Joule untuk menghasilkan energi panas, yang kemudian digunakan dengan susah payah untuk tujuan komersial. Apa Proses Energi Listrik menjadi Energi Panas?Pemanas air instan yang dipasang di kamar mandi didasarkan pada konversi energi listrik menjadi energi panas. Setiap kali kita menyalakan pemanas, kita mendapatkan aliran air panas. Tapi pernahkah Anda bertanya-tanya mengapa butuh beberapa waktu agar air menjadi panas? Pemanas air beroperasi pada Pemanasan joule or Pemanasan resistif, di mana panas dibuat dengan melewatkan arus listrik melalui konduktor. Pemanas listrik melibatkan interaksi elektron yang bergerak sebagai pembawa muatan dengan elemen pemanas di dalam konduktor. itu Medan listrik dikembangkan pada konduktor karena perbedaan potensial mempercepat elektron stasioner. Jadi elektron mentransmisikan dengan energi kinetik menuju arah medan listrik ke konduktor. Di sebagian besar pemanas listrik, a hambat digunakan sebagai elemen pemanas. Ini adalah dua komponen terminal pasif yang mengatur aliran energi listrik di dalam kinetik kemudian ditransmisikan ke elektron tetap ketika elektron yang bergerak mengenai elemen resistor. Elektron di dalam resistor tereksitasi untuk bergerak cepat karena menyerap energi kinetik. Yaitu ketika resistor menghilangkan kelebihan energi elektronnya sebagai energi panas menggunakan prinsip pemanasan Joule. Pekerjaan yang dilakukan W dari elektron yang bergerak ke dalam konduktor diberikan oleh W = mana, V adalah tegangan dan I adalah arus yang melewati panas yang hilang oleh resistor konduktor disebut sebagai Kekuatan pemanasan P. P = W/t = VISesuai Hukum Ohm, V = IR,Oleh karena itu, P = I2R, yang analog dengan hukum pertama Joule. Oleh karena itu, prinsip pemanasan Joule diturunkan dari hukum pertama Joule, yang menyatakan bahwa"Daya pemanasan P suatu penghantar listrik sebanding dengan perkalian kuadrat arus listrik yang mengalir I dan hambatannya R”.. Baca tentang Konversi Energi Mekanik ke Energi KinetikBagaimana Mengubah Energi Listrik Menjadi Energi Panas?Energi listrik diubah menjadi energi panas karena adanya sejumlah arus listrik mengalir melalui bahan konduktor, itu menjadi panas. Setiap konduktor memiliki resistansi bawaan yang menyebarkan energi panas ketika memperoleh energi listrik. Fenomena ini mencegah konduktor dari hubungan arus pendek selama energi listrik tinggi. Setiap konduktor mengandung beberapa Perlawanan untuk menjaga aliran arus. Kita juga dapat mengatur aliran arus dengan menambahkan resistor eksternal ke konduktor. Nilai energi panas yang diinginkan dapat diperoleh dari konduktor menggunakan Pemanasan Panas dengan mengubah Perlawanan kredit ShutterstockKetika arus melewati setiap konduktor, permukaannya menjadi lebih panas. Hambatan konduktor mempertahankan energi listrik dengan menyerap dan kemudian memancarkan jumlah energi yang tepat sebagai energi panas. Jika tidak, kita melihat hubungan arus pendek ketika sejumlah besar arus melewati konduktor bebas hambatan. Baca lebih lanjut tentang Muatan Elektrostatik
Resistansi atau hambatan listrik merupakan salah satu komponen penting dalam sebuah rangkaian elektronika. Untuk itu, kita akan bahas tuntas terkait dengan resistansi mulai dari pengertian, jenis, rumus, nila, persamaan, hingga simbol dari resistansi. Pastikan Anda memahami materi kali ini dengan membaca sampai tuntas. Resistansi adalah hambatan listrik atau indikator yang merupakan gaya melawan aliran arus. Itulah sedikit definisi mengenai resistansi yang paling umum. Untuk pembahasan selengkapnya, mari kita simak mulai dari jenis-jenis resistansi, rumus, hingga nilai-nilai resistansi berikut ini. Jenis – jenis Resistansi Jenis – jenis Resistansi Secara sederhana, komponen yang satu ini bekerja ketika elektron berbeda dengan dua terminal. Maka, listrik akan mulai mengalir ke tempat yang posisinya lebih rendah. Intinya, jika hambatan besar, maka arus akan menjadi semakin kecil. Begitu juga sebaliknya saat hambatan nilainya lebih kecil, maka arus akan semakin besar. Ada 3 jenis resistansi, diantaranya adalah Resistansi Penghantar. Resistansi Sambungan. Resistansi Suhu. Adapun penjelasan lebih detail dari masing-masing jenis hambatan listrik diatas dapat Anda simak dibawah ini. 1. Resistansi Penghantar Terdapat 3 jenis resistansi berdasarkan penghantarnya, diantara lain yaitu – Konduktor Konduktor adalah benda yang bersifat sebagai penghantar listrik yang baik karena mempunyai resisitivitas yang rendah. contohnya adalah tembaga, emas, besi, perak dll. – Isolator Isolator adalah benda yang memiliki sifat tidak dapat mengantarkan listrik dikarenakan memiliki nila risistivitas yang tinggi. Contohnya yakni plastik, karet, kertas, dan kaca. – Semikonduktor Semikonduktor adalah benda yang memiliki kedua sifat dari konduktor dan isolator. Contohnya yaitu silikon dan germanium. 2. Resistansi Sambungan Resistansi Sambungan adalah hambatan yang terjadi karena penyambungan antar komponen dalam sebuah rangkaian. Contohnya seperti sambungan antara kabel dan terminal baterai yang longgar sehingga menyebabkan panas pada suatu rangkaian. 3. Resistansi Suhu Resistansi suhu adalah hambatan listrik yang dapat dipengaruhi oleh naik turunnya suhu. Jadi, apabila suhu naik maka nilai hambatan juga ikut naik. Contoh dari jenis resistansi ini adalah pada saat kita mengecas HP, semakin bertambahnya baterai maka akan terjadi penurunan kecepatan dalam pengisian akibat terjadinya overheat pada suhu HP tersebut. Rumus Resistansi Rumus Resistansi Rumus resistansi sama dengan tegangan atau arus yang masuk. Sering juga disebut dengan istilah Hukum Ohm. Maksudnya yakni tegangan bertahan konstan maka arus penyebut meningkat dan menyebabkan nilai resistansi berkurang. Sedangkan saat arus turun maka dampaknya yakni nilai resistansi akan meningkat. Sederhananya yakni saat nilai hambatan listrik rendah maka arusnya akan semakin besar. Dan ketika hambatan listrik tinggi maka arus akan menjadi lebih kecil. Dasarnya yakni resistansi listrik mengaliri jenis dan suhu zat. Alat untuk mengukur resistansi atau hambatan listrik bernama multimeter digital. Arus, tegangan, parameter, dan sejenisnya merupakan objek yang bisa diukur. Ada beberapa macam cara menggunakan multimeter digital. Berikut ini tahapan yang bisa Anda coba praktikkan. Nyalakan instrumen lalu atur menjadi mode resistansi . Nilai resistansi target pengukuran dengan rentang secukupnya. Steker kabel tes merah pilih terminal . Sedangkan untuk steker kabel tes hitam untuk terminal COM. Kedua ujung resistor digunakan untuk menempatkan kabel uji dalam kotak. Layar LCD instrumen akan mulai menampilkan hasil pengukuran. Kabel uji resistor harus dilepas saat selesai mengukur. Alat tersebut tidak hanya digunakan untuk proses ukur, namun juga bisa mengoreksi suhu meter resistansi. Nilai Resistansi Nilai resistansi ini sendiri umumnya menggunakan satuan Ohm/Omega . Terutama yang difungsikan untuk mengukur rangkaian listrik. Nilai-nilai tersebut terangkum dalam penghantar atau konduktor. Tujuannya yakni untuk menghambat arus listrik serta mengendalikan besaran hambatan listrik. Sebagai tambahan informasi, berikut ini beberapa contoh material dan kondisi yang direkomendasikan dijadikan sebagai media penghantar listrik Material tembaga, yakni karena nilai resistansinya terbilang lebih rendah. Suhu, yakni nilai resistansi meningkat untuk membuat suhu meningkat. Panjang penghantar ini nantinya bisa digunakan untuk mengetahui nilai resistansi yang semakin tinggi. Luas penampang, yakni saat diameter semakin kecil maka nilai resistansi semakin tinggi. Untuk komponen yang difungsikan sebagai penghambat arus listrik sendiri disebut sebagai resistor. Dimana fungsi utama dari komponen ini yakni untuk melakukan proses pengurangan atau hambatan arus listrik dengan tujuan menurunkan level tegangan listrik. Sedangkan satuan resistansi yang digunakan yaitu Kilo Ohm, Mega Ohm, dan Giga Ohm. Satuan ini tentu menggunakan prefix atau SI standar internasional. Hitungannya adalah sebagai berikut Satuan Ohm 1 Giga Ohm Ohm 109 Ohm 1 Mega Ohm Ohm 106 Ohm 1 Kilo Ohm Ohm 103 Ohm Persamaan Resistansi Persamaan Resistansi Sebenarnya teori mengenai persamaan resistansi sudah ditemukan oleh George Simon Ohm sejak tahun 1825. Resistansi atau hambatan listrik dengan tegangan/voltage dan arus listrik/current nantinya dapat dijabarkan dengan Hukum Ohm. Berikut adalah rumus mencari persamaan resistensi menggunakan Hukum Ohm V = I x R atau R = V/I atau I = V/R Keterangan V voltage dalam satuan volt adalah tegangan listrik I current dalam satuan ampere adalah arus listrik R resistance dalam satuan Ohm adalah hambatan listrik Artinya, 1 ampere arus listrik mengalir sebuah komponen dengan tegangan 1 volt – resistansinya adalah 1 Ohm. Analogi yang lainnya yaitu rangkaian diberikan tegangan 24 volte dengan arus listrik 0,5 A. Hasilnya, 48 Ohm. Anda bisa menghitungnya menggunakan rumus persamaan resistansi di atas. Simbol Resistansi Simbol Resistansi Untuk simbol resistansi adalah huruf R resistance atau komponen resistor. Nah, simbol ini menentukan rumus masing-masing nilai, rumus dan persamaan resistansi. Berikut ini beberapa jenis symbol resistensi beserta rumus penghitungannya 1. Resistansi dalam hukum Ohm Resistansi dalam hukum Ohm yakni tingkat kuat arus yang masuk ke dalam dua titik akan berbanding lurus secara potensial. Kondisi ini digambarkan dalam rumus berikut I = V/R 2. Resistansi dalam konduktansi Resistansi dan hambatan arus listrik akan berbanding terbalik dengan hantaran atau konduktansi yang ada. Dimana besaran nilainya akan menghambat kuat arus listrik yang masuk. Sedangkan pengertian dasar mengenai kondutansi yakni besaran nilai yang mampu dijadikan sebagai penghantar arus listrik. Lalu untuk satuan konduktansi dalam S Siemens atau dengan simbol G. Jika dituliskan ke dalam rumus konduktansi adalah seperti berikut R = V/I atau G = I/V menjadi G = 1/R 3. Resistansi dalam kawat Menurut fisikawan Claude Pouillet dari Prancis mengenai resistansi dalam kawat. Nilai hambatan listrik yang masuk ternyata juga bisa ditentukan. Terutama oleh jenis kawat P, panjang kawat l dan luas penampang kawat A. Artinya, hambatan listrik ini akan berbanding lurus dengan panjang kawat yang tersedia. Sedangkan, hambatan akan berbanding terbalik dengan luas penampang kawat. Anda bisa menghitungnya menggunakan rumus hambatan kawat sebagai berikut R = P l/AKeterangan P m = Hambatan jenis kawat l m = Panjang kawat A m2 = Luas penampang kawat Kesimpulan dari rumus di atas yakni jika kawat yang digunakan lebih panjang diameternya maka tingkat hambatan listriknya juga akan lebih besar. Bisa diartikan kawat dengan luas penampang yang lebih besar maka akan membuat hambatan arus listriknya mengecil. 4. Resistansi konduktor Resistansi konduktor adalah ketika hambatan semakin besar, maka konduktor semakin panjang. Resistansi ini tergantung panjang, jenis, dan luas penampang. Sedangkan, luas penampang meningkat, maka resistansi berkurang atau bisa saja sirkulasi arus meningkat. Anda bisa menghitung masalah hambatan listrik menggunakan rumus persamaan resistansi tersebut. Resistansi dan Resistivitas Resistansi dan Resistivitas Resistansi dan resistivitas memiliki sedikit perbedaan. Karena resistivitas adalah hambatan konduktor dalam satuan panjang dan satuan penampang. Resistivitas juga bisa saja berbeda. Hal ini karena panjang dan ketebalan konduktornya sama. Adapun perbedaan antara resistansi dan resistivitas sebagai adalah sebagai berikut Resistansi Resistivitas Resistansi merupakan ukuran kapasitas material. Sifatnya, menahan elektron mengalir. Resistivitas merupakan ukuran material di bawah dimensi. Simbol resistansi huruf R. Simbol resistivitas huruf Yunani ƿ rho. Resistansi dengan satuan Ohm SI. Resistivitas dengan satuan ohm-meter. Pengaruh resistansi yaitu panjang, suhu material dan luas. Pengaruh resistivitas yaitu naik/turunnya suhu. Perbedaan antara resistansi dan resistivitas juga akan berbeda saat menerapkannya pada alat elektronik. Misalnya seperti resistansi hanya diterapkan pada alat pemanas. Kesimpulan Demikian pembahasan mengenai resistansi lengkap dengan rumus dan nilai-nilainya. Kesimpulannya, Anda bisa menghitung besaran hambatan listrik pada elektronik menggunakan rumus tersebut, ya? Semoga pembahasan di atas sudah cukup membantu Anda dalam memahami apa itu resistensi dan cara kerjanya.
Bayangkan kamu sedang naik perahu di sebuah sungai. Selama perjalanan, ada masanya kamu mendapati aliran air yang tenang, lembut, dan kamu berlayar tanpa hambatan berarti. Tetapi, ada juga masanya kamu akan menemukan bebatuan serta ranting pohon yang menahan aliran air, sehingga membuat perahumu berjalan lebih pelan. Nah, hal ini sebenarnya berkaitan dengan hambatan listrik dan arus listrik. Oke, oke, sebelum sampai ke sana. Kita bahas sedikit tentang arus listrik ini. Pada dasarnya, arus listrik adalah arus elektron yang diarahkan berlawanan. Kalau kamu perhatikan pada baterai, misalnya. Kamu pasti memasang kutub positif + ke arah negatif - kan. Ini lah yang dimaksud dengan berlawanan. Sebelum abad ke-19, para peneliti sebenarnya sudah mampu menghasilkan arus statis dengan menggosokkan beberapa material. Tapi, kemampuan mereka baru sebatas di situ saja. Paling mentok, cuman munculin percikan listrik. Percikan listrik sumber NightHawkInLight via giphy Mereka belum bisa, tuh, membuat tegangan listrik konstan yang bisa menghasilkan aliran listrik yang stabil. Sampai kemudian, Georg Simon Ohm, seorang fisikawan asal Jerman, berhasil menemukan hubungan antara hambatan listrik dengan kuat arus dan tegangan. Dia pun mengeluarkan hukum Ohm yang menghasilkan rumus I = V/R Seperti arus di sungai yang penuh ranting, bebatuan, dan hambatan tadi, semakin besar hambatannya , maka akan semakin kecil kuat arusnya A. Sekarang, lanjutkan perjalanan perahumu. Kamu terus mengayuh dan, sesampainya di ujung sungai, kamu melihat dua bendungan. Pintu bendungan yang satu terbuka lebar, sementara yang lainnya hanya terbuka sedikit. Bendungan yang airnya mengecil karena pintunya hanya terbuka sedikit sumber ruangguru Bendungan dengan pintu terbuka lebar sumbernya besar pasti akan mengeluarkan banyak air. Di sisi lain, bendungan dengan pintu yang terbuka sedikit juga akan mengeluarkan sedikit air. Baca juga Penjelasan Hukum I dan II Kirchoff Inilah kaitan antara beda potensial/tegangan listrik v dengan arus listriknya A. Semakin besar sumber tegangannya v, semakin besar kuat arus listriknya A. Semakin kecil sumber tegangannya, semakin kecil juga kuat arus listriknya. Berbicara mengenai arus listrik, pasti berhubungan dengan “media” pembawanya, dong. Contohnya, kabel yang terbuat dari tembaga dan kawat yang terbuat dari besi. Kedua benda ini, pasti mempunyai hambat jenis yang berbeda. Jika kembali pada konsep “perahu di sungai penuh batu dan ranting”, tentu perahu kita akan lebih sulit berlayar. Sebaliknya, dengan sedikitnya hambat jenis sungai mulus, hanya aliran air lancar akan mengurangi nilai hambatan listriknya. Perahu yang terhambat karena berbagai hambat jenis sumber crash course via giphy Dari situ kita bisa tahu bahwa semakin besar hambat jenisnya m, semakin besar juga hambatannya . Sekarang lanjut ke luas penampang ya. Bayangkan perahu kamu sempat melewati dua jenis sungai sungai yang panjang dan pendek. Keduanya sama-sama tidak ada hambatan. Hanya aliran air tenang dan kosong. Pasti dong semakin panjang sungainya, lama-lama kita akan bete. Bosan. Merasa “terhambat” karena kok kayaknya nggak sampe-sampe. Bandingkan dengan sungai yang pendek. Baru sebentar, eh udah sampai tujuan. Oleh karena itu, semakin panjang semakin panjang suatu kawat L, hambatan listriknya pun akan semakin besar juga. Yuk lanjutkan perjalananmu. Sekarang, semakin lama kamu berlayar, kamu mulai menyadari bahwa… lebar sungai tersebut semakin besar. Apa perasaan kamu? Takut? Atau malah lega? Pada umumnya, seseorang merasa lebih “senang” dan lega mendapati hal tersebut. Kita justru akan merasa lebih “terhambat” dengan kondisi sungai yang sempit. Apalagi kalau di sungai tersebut banyak perahu lain yang ikut berlayar. Kamu akan jadi lebih susah bergerak, dan lama sampai ke tujuan. Lebar sungai membesar, hambatan mengecil sumber Itu artinya, semakin besar luas penampangnya A, maka hambatannya akan semakin kecil. Gimana? Akhirnya selesai juga perjalananmu. Ternyata mudah juga ya mempelajari hambatan listrik dan hukum ohm lewat analogi perahu ini. Masalahnya, Ohm hanya mengungkapkan hambatan yang bersifat konstan. Lalu bagaimana untuk hambatan yang sifatnya tidak konstan? Coba kamu ingat-ingat pengalaman pahit kamu dengna laptop yang kamu gunakan. Mungkin banyak di antara kita yang terlalu lama menggunakan laptop, lalu tiba-tiba laptopnya ngehang karena panas. Nah, hambatan tidak konstan, kurang lebih seperti itu. Rumusnya kayak gini Ya, hambatan itu ada kaitannya dengan suhu. Seperti yang tadi kita bahas, suhu laptop yang panas, seringkali membuat dia nge-hang dan tidak bekerja. Itu artinya, hambatan si laptop bertambah karena pengaruh panas. Nah, itu tadi pembahasan kita tentang hambatan listrik. Ternyata, belajar fisika jadi mudah apabila kita bisa mengandaikan dengan hal-hal yang ada di sekitar kita ya. Kalau kamu ingin memelajari materi pelajaran seperti ini dalam bentuk video animasi menarik, lengkap dengan infografik dan latihan soal, tonton aja di ruangbelajar!
jelaskan bagaimana daya listrik dalam kawat hambatan berubah menjadi panas